
Journal of Statistical Physics, Vol. 102, Nos. 5�6, 2001

Shear Flow of a Granular Material

C. Cercignani1

Received July 11, 2000

The shear flow of a granular material between parallel plates is treated by
means of the Boltzmann equation with pseudo-Maxwellian grains. The
moments for reverse reflection boundary conditions are found explicitly. The
shearing stress is found to depend quadratically on the shear rate.
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1. INTRODUCTION

In the last few years one has witnessed a notable development of the study
of the mechanics of granular materials, because of their growing impor-
tance in the applications (sands, powders, rock and snow avalanches,
landslides, grains, fluidized beds). The problems related to the study of
fast flows of grain materials, which arise, more and more frequently, in
industrial processes and are of growing importance in the study of natural
phenomena, have been the object of much attention and have been treated
with various methods that differ in rigor and complexity. In the majority
of these studies one adopts the assumption of one-dimensional flow and
neglects the interaction between grains and air. The various methods
applied to these simplified problems have also been used to model other
important cases of collisional granular motion, including fluidized beds.
Some recent work in the field(10�12) deals with the quasi-static flow regime,
usually characterized by relatively large densities and prolonged contacts
between the grains, as well as more than two-body interactions. Here we
are interested in the rapid granular flow.(3, 13) The methods used in this
regime include: (i) Development of physical and experimental models (3);
(ii) computer simulations; (iii) kinetic theory.
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Actually many recent studies are based on the assumption that, in
certain conditions of motion, collisions between particles supply the main
mechanism of momentum and energy exchange. This assumption spontane-
ously suggests an analogy with the kinetic theory of gases. In this theory the
particles are of course molecules and there are thus essential differences
between the two situations, that must be duly taken into account. In par-
ticular, the intermolecular collisions are frequently elastic, whereas this is not
a reasonable assumption when dealing with particles of a granular material.

Equations derived for rapid granular flows may be of some use in the
quasi-static flow regime, since the dissipative nature of the particle interac-
tions is a feature common to all regimes of granular flow. A direct analysis
based on the Boltzmann equation is due to Goldshtein and Shapiro;(9)

a more systematic approach has been provided by Sela and Goldhirsch.(14)

In the present paper, following previous work, (1, 4) we consider pseudo-
Maxwellian particles approximating dissipative hard spheres, with the aim
of studying the shear flow of a granular material between two parallel
plates. Our equations describe the system of the aforementioned particles
undergoing interparticle inelastic collisions, described by a Boltzmann-like
collision term, with the boundary conditions of reverse reflection. In the
case of a gas this scheme(5, 6) produces solutions growing exponentially in
time, first found by Galkin(8) and Truesdell(15) for Maxwell molecules and
shown to exist for arbitrary models by the author. (7) As indicated in refs. 5
and 6, this time growth is due to the lack of a dissipative mechanism for
the heat produced by the shear stress. This mechanism is present in the
case of granular material and a steady solution can be obtained.

The paper is organized as follows. In Section 2 we recall our basic
equation, and obtain the form of this equation for homoenergetic flows of
a granular material. In Section 3 we derive exact equations for the second
order moments and show that an exact steady solution exists. This produces
a constitutive equation showing that the shear stress is proportional to the
square of the strain rate.

2. THE KINETIC EQUATION AND ITS FORM FOR
HOMOENERGETIC FLOWS

Let f (v, t) be a distribution function (here v # R3 and t # R+ denote the
velocity and time variables, respectively) of a spatially homogeneous
system of inelastic particles. Following ref. 1 we describe the system by the
pseudo-Maxwellian kinetic equation

�f
�t

+v }
�f
�x

=B(\, t) Q( f, f ) (2.1)
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where the term in the right-hand side corresponds to inelastic collisions
between particles. The explicit form of the first term is given by the following
formulas which correct the strong form of the pseudo-Maxwellian collision
integral given in ref. 1:

Q( f, f )=
1

4?
=|

R 3 |S 2
[ f (t, v

*
) f (t, w

*
) J& f (t, v) f (t, w)] dn dw (2.2)

where v
*

, w
*

are the pre-collisional velocities associated to the collision
mechanism

v
*

=
1
2
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1&e

4e
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1+e
4e
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and J is the Jacobian of the transformation:

J=
1
e2

|v&w|
|v

*
&w

*
|

(2.5)

Here 0<e�1 is the restitution coefficient (e=1 for elastic collisions).
Then the weak form of the collision integral coincides with the weak

form given in ref. 1:

| dv g(v) Q( f, f )

=
1

8? |
R 3 |R3 |S2

f (t, v) f (t, w[ g(v$)+ g(w$)& g(v)& g(w)] dv dn dw

(2.6)

where g(v) is a test function and v$, w$ are post-collisional velocities given
by

v$=
1
2

(v+w)+
1&e

4
(v&w)+

1+e
4

|v&w| n (2.7)

w$=
1
2

(v+w)&
1&e

4
(v&w)&

1+e
4

|v&w| n (2.8)
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We denote

\=|
R 3

f (v, t) dv, \u=|
R3

vf (v, t) dv, 3\%=|
R3

|v&u| 2 f (v, t) dv

(2.9)

where \ # R+ , u # R3, and % # R+ are the density, bulk velocity and tem-
perature of the granular material. Then

B(\, t)=B(\) - % (2.10)

where B(\) is a given positive function of the density \ (see refs. 1 and 4
for details).

Thus, all notations in (2.1) are explicitly given in (2.2)�(2.10).
Let us now consider a granular material with average density \0 , in

motion between two parallel plates located at x=0 and x=L, respectively.
The upper plate moves with velocity V, whereas the lower one is at rest.

We are going to look for a solution which is self-similar, in the sense
that if we cut the slab at x=L$ and imagine of putting a wall there, the
solution in the slab between x=0 and x=L$ remains the same, provided
we give the plate at x=L$ the velocity V$=VL$�L. Then the basic param-
eter must depend on the ratio K=V�L and should be the product of the
previous two parameters. We complete our formulation with the boundary
conditions: at the plates we assume that the grains satisfy the bounce-back
boundary condition in the reference frame of each plate and hence write:

f (t, 0, y .v)= f (t, 0, y, &v) (2.11)

f (t, L, y, v)= f (t, L, y, 2V j&v) (2.12)

Following a paper by the author, (7) we shall look for solutions such
that the variable x appears in f only through the bulk velocity

f = f (c, t) (2.13)

where c=v&v is the random velocity.
Homoenergetic affine solutions for the moments of a Maxwell gas

were first found by Galkin and turned out to be homoenergetic dilata-
tions.(8) The book by Truesdell and Muncaster(16) gives a unified discussion
of homoenergetic affine flows for a general medium. The defining properties
are the following:

(a) The body force (per unit mass) X acting on the particles is
constant:

X=const. (2.14)
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(b) The central moments

pi1 i2 } } } in
=|

R3
ci1

ci2
} } } c in

f dv; (ik=1, 2, 3) (2.15)

are space-homogeneous

(c) The bulk velocity v is an affine function of position x:

v=K(t) x+v0(t) (2.16)

An analysis of the momentum balance equation based on (a), (b), and
(c) immediately leads to the following restrictions on K and v0 :

K4 +K2=0
(2.17)

K4 v0+Kv0=X

The general solution of this system is:

K(t)=[I+tK(0)]&1 K(0)
(2.18)

u0(t)=[I+tK(0)]&1 [v0(0)+tX+ 1
2 tK(0) X]

where I is the 3_3 identity matrix. This solution exists globally for t>0 if
the eigenvalues of K(0) are nonnegative; otherwise the solution ceases to
exist for t=t0 , where &t&1

0 is the largest, in absolute value, among the
negative eigenvalues of K(0).

In particular, if

[K(0)]2=0 (2.19)

then [I+tK(0)]&1=I&tK(0) and therefore K(t) is independent of time.
v is then steady if and only if

K(0) X=0 (2.20)

and v0(0) is chosen in such a way that

K(0) v0(0)=X (2.21)

In particular, this is always possible if X=0.
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Equation (2.19) is satisfied if and only if a coordinate system exists for
which the matrix representation of K(0) is given by

0 0 0

((Kij ))=\K 0 0+ (2.22)

0 0 0

For a proof see ref. 7.
When (2.19) applies one talks, for obvious reasons, of a homoenergetic

shear flow. The density is not only space-homogeneous but also constant
in time for this flow.

Although here we are interested in finding solutions and not in just
proving their existence, we mention that solutions of the Boltzmann equa-
tion for homoenergetic affine flows exist, even for models more general
than Maxwell's. In particular one can show(7) that f (c, t) must satisfy the
following equation

�f
�t

&
�f
�c

} Kc=Q( f, f ) (2.23)

and prove that this equation admits the following

Existence Theorem. (7) There exists a solution f of the Boltzmann
equation, where the cross section in the collision term Q( f, f ) does not
grow more than linearly in v, v

*
and the initial mass density, energy den-

sity, and H-functional (=� f log f dv) are finite at time 0. These quantities
remain bounded for 0�t�t� . The time t� is arbitrary provided K(0) has no
negative eigenvalues. If K(0) possesses negative eigenvalues and t&1

0 is their
largest absolute value, then t� must be smaller than t0 .

Although this was proved for energy conserving collisions, the result
should hold for the case of granular materials, although modifications in
the proof are certainly required.

3. THE MOMENT EQUATIONS AND THE EXPLICIT SOLUTION

The moments of the distribution function are particularly useful if we
assume Maxwell particles, first introduced for granular materials in ref. 1
and used in (2.1). The reason why this occurs is that when we try to form
the equations satisfied by the moments, the contribution from the collision
term contains a finite number of moments of order not higher than the
order of the moment arising from the time derivative term in the
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Boltzmann equation. This property was discovered by Maxwell and is
characteristic of the particles that are now called after him.

As shown by Galkin(8) and TruesdellTr, the second order moment
equations for a Maxwell gas, associated with a homoenergetic affine flow,
are decoupled from those of higher order and can be solved explicitly. This
result generalizes the result mentioned above for homoenergetic dilatations.
In order to obtain the moment equations, one multiplies (2.23) by the
appropriate monomial ci1

ci2
} } } cin

, and integrate over the velocity space.
The term with the derivative with respect to the velocity variables must be
handled by partial integration; the collision term is complicated unless we
adopt Maxwell particles, as we shall do. General results and details about
the moment equations can be found in a recent paper.(2)

The most interesting moment equations are those for p22=� c2
1 f dv,

p12=� c1c2 f dv, p= 1
3 � |c| 2 f dv=\%:

p* + 2
3 Kp12+=(1&=) B(\) - % p=0 (3.1)

p* 12+ 1
2 (1&=2) B(\) - % p12+Kp11=0 (3.2)

p* 11+ 1
2 (1&=2) B(\) - % ( p11& p)=0 (3.3)

Equations (3.1)�(3.3) form a system of three nonlinear first order differen-
tial equations that possesses a steady solution with p11= p and

p12=&
3
2

1
K

=(1&=) B(\) - % p (3.4)

%=
4
3

1
(1&=2) =(1&=)[B(\)]2 K2 (3.5)

and hence

p12=&
3
2

1
K

=(1&=)B(\) \%3�2 (3.6)

Hence

p12=&'(=) \[B(\)]&2 K |K | (3.7)

where '(=) is a constant which, of course, tends to infinity when = vanishes.
Also the ``temperature'' of the granular material % reaches a well defined
value proportional to K2.
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4. STABILITY

It would be interesting to investigate the stability of the solution found
above with respect to arbitrary perturbations. With the methods used in
this paper we can only investigate it with respect to data which respect the
assumption of homoenergetic affine flow. This is of course a big restriction,
but may indicate a way to stabilize the flow. To simplify the problem we change
the time unit by dividing the differential equations by 1

2 (1&=2) B(\) - %�p.
We obtain:

p* + 2
3Hq+: - p p=0 (4.1)

q* +- p q+Hr=0 (4.2)

r* +- p r&- p p=0 (4.3)

where we have denoted q= p12 and r= p11

:=
2=

1+=

We study the stability by letting:

p= p0+x, q=q0+ y, r=r0+z

where ( p0 , q0 , r0) denotes the steady solution. We have

x* +
2
3

Hy+�3
2

:|H | x=0 (4.4)

y* +� 2
3:

|H | y&
1
2

Hx+Hz=0 (4.5)

z* +� 2
3:

|H | z&� 2
3:

|H | x=0 (4.6)

If we compute the eigenvalues associated with the exponential solutions
behaving as exp(* |H | t), we find that the eigenvalues satisfy

*3+\�3:
2

+2 � 2
3:+ *2+\7

3
+

2
3:+ *+

2
3 �

2
3:

=0

When e, and hence :, ranges between 0 and 1, this third degree equation
has one negative real root and two complex conjugated roots with negative
real part. Hence stability with respect to small perturbations in the restricted
class investigated here follows.
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